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Introduction: 

Web defects such as wrinkles and lateral misalignment are easy to see. However, the deformations 

and stresses that cause them are usually invisible to the unaided eye. This makes it very difficult for 

web handling engineers to relate cause and effect. As a consequence, there is still much controversy 

and confusion over issues such as, 

1. Where do wrinkles come from and what can you do about them if they occur? 

2. What causes a web to track laterally on a misaligned roller? 

3. Should a concave roller be used for spreading instead of a bowed roller? 

4. Does a concave roller even spread? 

5. Should rollers be rough or slick to get rid of wrinkles? 

The invisibility problem: 

Stress is invisible. We experience it only through the deformations it produces. And in most 

cases, the deformations are so small that they can’t be detected without special instruments such 

as strain gages, load cells and polarimeters. Even when deformations are visible, as in the case of 

the lateral deflection of a web at a misaligned roller, it is usually the deformations we can’t see 

that lead to problems. For example, lateral deflection is often accompanied by shear strain. The 

shear strain is invisible. But, it can cause wrinkles. 

The complexity problem: 

To make matters worse, stress is mathematically difficult. It’s not a scalar quantity like 

temperature. It’s not even a vector like velocity. It’s a squirrely thing called a tensor. And even 

people who understand tensor algebra will tell you that it’s precious little help in understanding 

anything in an intuitive way. If you studied strength of materials or elasticity in school, your 

textbook probably avoided tensors with mind-bending graphic tools like Mohr’s circle. So, even 

thinking about stress is hard. 

Solving the invisibility problem: 

The root of the invisibility problem is that webs are generally only stretched a few tenths of a 

percent. There are two reasons for this. First, webs need to be processed in a condition similar to 

the final application. For example, a web printed at an elongation of 10 % would look distorted 

when relaxed. Second, most plastics are permanently deformed at elongations of more than a few 

percent. Therefore, process lines typically run at tensions producing only a few tenths of a 

percent of elongation – that is .001 to .002 inch per inch.  

In the present situation, where the goal is demonstration and insight, there is no reason why the 

elongation limitation can’t be overcome by using a rubber web. Latex can be stretched several 

hundred percent without damage. It does exhibit some bad characteristics such as viscoelasticity 



 

and nonlinearity. But, then again, so do most of the plastics used for film production. By running 

at elongations of ten percent (0.1 inch per inch) it should be possible make deformations visible 

without provoking much more nonlinear behavior than is seen in ordinary webs. Printing a 

rectangular grid on the web can further enhance visibility of the deformation.  

Another advantage of using a rubber web is that it has a high Poisson ratio, which amplifies the 

MD and CD interaction. 

A special machine, illustrated in Figure 1, was built to facilitate testing with a latex web at high 

elongations.  

Web:  6 mil latex, 6 inches wide, 20 feet long, imprinted with a reference grid.  

Rollers: 10 inch face length, 3 inch diameter. 

Drive: Closed-loop velocity control with tachometer feedback - 0 to 20 Ft/min 

Tension control: Magnetic particle brake, no feedback - 0.5 to 10 Lb 

Lateral position control: Closed loop control at unwind and rewind with edge sensors. 

Rewind tension: Constant torque, no feedback – minimum possible. 

During test runs, the working tension is isolated from the unwind and rewind to minimize 

winding issues. Winding tension is on the order of 0.5 Lb and a complete roll has less than 25 

layers. 

In a typical run, 10 spans of web pass through the 18 inch test span. At that point it will have 

reached 99.995 % of its steady state position. The web is then rewound by hand at low tension by 

threading it directly from the rewind to the unwind.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 

Test machine 

 

 



Solving the complexity problem: 

Part of the complexity problem is solved by solving the visibility problem. Seeing always aids 

understanding. But, the ultimate purpose of understanding is to find organizing principles that 

can be used to predict behavior when conditions are changed. There are two concepts that are 

crucial to understanding web/roller interaction. 

The rules are: 

The normal entry rule1  

A web entering onto a roller will align its direction of travel perpendicular to the roller axis. 

If the web is not initially perpendicular, it will travel laterally on the roller at a rate 

proportional to the tangent of the angle between the web and the roller until it reaches the 

perpendicular condition. 

The normal strain rule2  

If a small patch of web is followed from the entry of one roller to the entry of the next, the 

ratio of the MD lengths of the patch will be the same as the ratio of the respective MD 

velocities at those points. Or in other words, (1 + εu)/(1 + εd) = Vu/Vd . Where εu is the MD 

strain at the entry of the upstream roller, εd is the strain at the entry of the downstream roller 

and Vu and Vd are the respective MD velocities   

In this case MD is assumed to refer to the direction normal to the axis of a roller (even if the 

roller is misaligned) rather than being parallel to an imaginary line down the center of the 

process. 

Notice that this rule implies that at the point of entry onto a roller, the MD strain can be 

predicted solely from web velocities at the rollers and the MD strain in the previous span.  It 

does not depend on the CD or z components. Understanding this concept is one of the keys to 

developing an intuitive understanding of web/roller behavior.  

In addition to providing intuitive insight, the normal strain rule also makes it possible, with 

help from the normal entry rule and elasticity theory, to use FEA software to solve for all of 

the stresses and strains throughout a span. This method was described by the author in a 

paper delivered at IWEB 2005[1]. Although that is not the subject of this paper, it is worth 

noting that a CAD tool with this capability will soon be available.  

It is important to bear in mind that these rules apply only if there is no slipping between the web 

and the roller. Slipping may occur due to excessive friction in roller bearings. And at high 

speeds, air entrainment can reduce web to roller friction. However, this does not diminish the 

importance of the rules. Many processes operate at speeds where air flotation effects are not 

significant and rollers turn freely. And even when slipping does occur, it is useful to understand 

what is being lost. 

The rest of this paper will use diagrams and pictures of an actual web running at large strains to 

accomplish the following. 

1. Illustrate the basic principles underlying the two rules. 

a. Simplified string model for the normal entry rule. 

b. The normal entry rule in a 2-D web. 

                                                 
1 There is no evidence that any of the guiding companies in the U.S. knew of the normal entry rule prior to 1960. 

The first published mention of it is in a book by Donald Campbell published in 1958. The author independently 

rediscovered it in 1960 while working at Fife Corporation. 
2 Discovered by the author in February of 2003 and first published at IWEB 2005. 



 

c. How conservation of mass and particle paths lead to the normal strain rule. 

2. Show how the normal entry rule causes a uniform web, running between aligned rollers, 

to reach a state of pure MD strain. 

3. Show how, in the case of a misaligned roller, a web path curves due to the 2-D effects 

predicted by Shelton’s beam model. 

4. Illustrate shear and rotation at a misaligned roller. 

5. Illustrate how a concave roller spreads a web. 

6. Show how operation of the normal strain rule at a nonuniform roller can cause the 

relaxed state of a web to become nonrectangular (which raises the question of how do 

you predict the deformations of a web under stress when you don’t know its relaxed 

shape). 

7. Show how strain is transported across a roller. 

8. Show how a wrinkle evolves. 

A note about roller traction: 

When a web travels over a roller it will pass through two zones. The first is called the “stick” 

zone where there is no relative motion between the web and the roller. The second is called the 

“slip” zone where the web is beginning to slip loose under the influence of tension in the 

following span. As turning resistance of the roller increases or web-to-roller friction decreases, 

the slip zone will increase at the expense of the stick zone. When the stick zone goes to zero the 

surface speed of the roller will no longer match the web speed and neither the normal entry or 

normal strain rules will be operative. For a good discussion of this subject see a paper by Dilwyn 

Jones[2]. 

 

 

 

 

 

 

 

 

Figure 2 

Roller traction 

 

The reason for the Normal Entry Rule: 

The simplest way to think about the normal entry rule is to imagine the web as a flexible string. 

This is illustrated in Figure 3.  

Points on the web near the downstream roller, such as point (a) will move in the same direction 

as the roller surface. So, if the web is at an angle, θ, with the roller axis, those points will arrive 

at the roller at a point (a’), as though the web were following a helical path on the roller. 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3 

The normal entry rule 

The web path is anchored at the upstream roller. So, as it advances in the MD direction it has no 

choice but to pivot in a manner that gradually reduces the angle θ. When it reaches the point 

where θ is zero it stops moving laterally.  

You can easily see this by resting your fingers on a pencil and rolling it across a desktop. That’s 

how I first saw it. 

A real web is a little more complicated. But, the same principle is at work. The only difference is 

that the web can’t take the idealized shape shown in Figure 3. Shelton[3] in 1968 showed that it 

can be treated as a deflected beam that follows a curved path between the rollers. The curve 

changes the effective pivot point for the web. But, the normal entry rule still applies at the 

downstream roller. 

The reason for the Normal Strain Rule: 

In Figure 4 below, the web is assumed to be running in a steady state with good traction on the 

rollers. At the entry to the rollers, the normal entry rule requires that the particle paths be normal 

to the roller axis. The area marked (a) represents a small area with sides parallel to two particle 

paths. The area marked (a’) is the same portion of web at the moment that it enters onto the 

downstream roller. The roller surface velocities are Vu and Vd. Δx is the relaxed length of the area 

(a) in the MD direction. εxu is the MD strain at the upstream roller. εxd is the MD strain at the 

downstream roller. Conservation of mass requires that the mass flow into and out of the span for 

any portion of web between two particle paths be constant. Otherwise, material would 

accumulate in the span and a steady state would not exist. For this to be true, each area must 

travel past the line of roller contact in the same length of time, Δt. Therefore, 

  1 xu ux V t      (1) 

and   

   1 xd dx V t      (2) 



(1+y)dy

dy

dx

(1+x)dx



'
Particle paths

Undeformed area
Deformed area

(1+x)dx

 

Equating Δt from (1) with the value from (2) and solving for εxd 

  1 1d

xd xu

u

V

V
     (3) 

Equation (3) is a mathematical statement of the normal strain rule. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 4 

The normal strain rule 

Area (a’) shown in Figure 4 will not necessarily be rectangular. In cases, such as concave rollers, 

there will be shear stress at some points across the web at the roller entry. This does not, 

however, affect the validity of the normal strain rule. As illustrated in Figure 5, the shear strain 

will be equal to ’ - . Since ’ is the normal entry angle, it will be zero. Therefore, (a’) becomes 

a parallelogram and its area will be the same as a rectangle of the same height and length. 

Furthermore, the length of the parallelogram, (1+ εx)dx, will be the same as if the shear were not 

present. 

 

 

 

 

 

 

 

 

 

 
Figure 5 

Effect of shear on the normal strain rule 
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