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ABSTRACT 

 In an earlier IWEB paper, “A New Method for Analyzing the Deformation and 

Lateral Translation of a Moving Web”[5], a nonlinear PDE model, suitable for use with 

low-cost FEA software, was developed. That work considered only in-plane deformation 

of a flat web. For a twisted web, something more is needed. Attempts to run a 

straightforward three-dimensional model on a 3D version of the FEA software were 

unsuccessful. It seems that adding an extremely thin third dimension causes serious 

convergence difficulties for the solver. Furthermore, the number of nodes increases 

dramatically, causing run times to increase from minutes to hours. More sophisticated or 

special-purpose FEA codes might be able to cope with the problems. However, one of the 

goals of this work is to develop methods that will run fast on low-cost software. So, 

attention is focused on creating a two-dimensional solution based on concepts similar to 

those used in large-deflection plate theory.  

 This paper describes such a model. It incorporates the following features. 

1. It allows analysis of the effects of rollers that have both in-plane and out-of-

plane misalignment, including large rotations. 

2. Since the equations of equilibrium for the in-plane stresses are the same as those 

used in the [5], this model is a natural extension of that work.  

3. It incorporates the normal entry and normal strain boundary conditions for the 

downstream roller and can, therefore, include the effects of nonuniform webs 

and rollers. 

4. Nonlinear definitions of stress and strain incorporate the effects of large 

rotations. 



NOMENCLATURE 

 E Modulus of elasticity, Pa 

 D Flexural rigidity, N-m 

 h Web thickness, m 

L Length of span, m 

 u Particle displacement in x direction, m 

 ux Derivative of u with respect to x 

 uy Derivative of u with respect to y 

 v Particle displacement in y direction, m 

 vy Derivative of v with respect to y 

 vx Derivative of v with respect to x 

 w Particle displacement in z direction, m 

 wx Derivative of w with respect to x 

 wy Derivative of w with respect to y 

 Vu Surface velocity of upstream roller, m/s 

 Vd Surface velocity of downstream roller, m/s 

 xy Shear strain referred to deformed coordinate system 

 xx Strain in direction of deformed x-axis 

 yy Strain in direction of deformed y-axis 

xo Machine direction strain at entry of upstream roller 

 Poisson’s ratio 

yy Stress in direction of deformed y-axis, Pa 

xx Stress in direction of deformed x-axis, Pa 

 xy Shear stress referred to deformed coordinate system, Pa 

 cr Critical buckling stress of a cylinder, Pa 

 yG CD compressive stress predicted by G-S model, Pa 

 yF CD compressive stress predicted by FEA model, Pa 

 cr Experimental value of angle at which twisted web develops wrinkle, degrees 

 Angle of tangent to particle trajectory of web (in relation to x-axis), radians 

 o Density of relaxed web, Kg/m3 

 i1 Unit vector in direction of fiber that was parallel to x-axis before deformation 

 i2 Unit vector in direction of fiber that was parallel to y-axis before deformation 

 i3 Unit vector in direction of fiber that was parallel to z-axis before deformation 

 

Subscripts  

 u Upstream 

 d Downstream 

 

 

INTRODUCTION 

 An ideal model for a twisted web would include bending behavior so that wrinkling 

can be analyzed. Theodore von Karman developed a promising candidate. It is two-

dimensional and incorporates out-of-plane displacements as well as bending. 
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In these equations, w is the out-of-plane displacement in the z direction; x , y and xy 

are the in-plane stresses, D is the flexural rigidity and h is thickness. The machine 

direction will be assumed to be aligned with the x-axis throughout this paper. Note that 

there is no differentiation relative to the z-axis. Relations (1) and (2) are the plane stress 

equilibrium equations. The left side of (3) is the familiar thin plate equation. The right 

side of (3) accounts for interaction of the mid-plane stresses and bending. If these 

equations are modified to incorporate nonlinear finite deformation theory, it becomes 

theoretically possible to accurately model large angles of twist, detect the onset of 

instability and then analyze the web in its buckled state. Unfortunately, the fourth order 

terms of these equations present almost as much difficulty as a full three-dimensional 

treatment. This is especially true when they are extended to large rotations using finite 

deformation theory. 

 

 The problem becomes much easier if the model is required to work only up to the 

point of elastic instability. Most webs are so thin and flexible that they can be treated as 

membranes with no resistance to bending. This is true even when the web is twisted. 

Curvatures due to twisting are small and the bending moments are insignificant. It is only 

with the onset of buckling that large curvatures can develop in the form of narrow 

troughs. Therefore, the problem can be separated into two parts – unbuckled and buckled. 

 

 This model treats the unbuckled twisted web. 

EARLIER WORK 

 Good and Straughan[1]  analyzed a twisted web by assuming that each fiber in the 

machine direction (MD) follows a straight path between the rollers. Based on this, the 

MD elongation at each cross web location was estimated as a function of the twist angle 

and from that estimate an MD stress profile was created. This profile was then applied to 

an ingenious Airy’s function model of a flat membrane to estimate the CD stress. Using 

Timoshenko’s theory of buckling of a cylindrical shell, they then predicted the angle of 

twist necessary to cause the onset of wrinkling and found good agreement with 

experiments. Their method circumvents the complications of analyzing a twisted 

geometry. However, it does not permit accounting for the effects of the normal entry and 

normal strain rules at the downstream roller and, as will be seen from this analysis, these 

have a significant effect near the downstream roller. 

 

 Mockensturm[2] used fully nonlinear plate theory to analyze a twisted web. His 

method draws heavily on relatively recent work by Naghdi[3]. It allowed him to detect 

the onset of buckles and to predict their shape. I cannot speak with authority about the 

validity of the results because the mathematical methods are unfamiliar to me. However, 

it appears that his analysis, like Good and Straughan’s, did not account for the boundary 

conditions at the entrance to the roller.  In any event, it is a very interesting paper and 

illustrates the potential value of Naghdi’s methods to web mechanics. 



THE MODEL 

 As mentioned before, the curvatures in a thin twisted web will be quite small in 

relation to its flexural rigidity. And since the MD tension tends be large compared to all 

other stresses it can be safely assumed that the curvature in the machine direction will be 

virtually zero. This can be easily observed in a real web by holding the ends of a string 

against the web surface at the ends of a span. If the string is aligned with the machine 

direction it will be in full contact along its length, regardless of which surface of the web 

it is on. Thus, in the MD direction the web is neither concave nor convex. This is 

illustrated in Figure 1. This latex web is 5.5 inches wide and 0.030 mils thick. Tension is 

3.7 pounds. A thread has been passed under the bottom roller and is draped over the top 

with a weight on its end. It is in full contact all along its length. The same thing will be 

observed if the string is on the opposite surface. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 – Illustration of zero Curvature in the MD direction 

 One consequence of zero MD curvature is that curvature in the orthogonal direction 

will also be zero.  This is easily observed by viewing twisted webs from the edge. 

 

 Zero MD curvature allows equation (3) in von Karman’s model to be greatly 

simplified.  It becomes simply, 
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 The next step in creating the model is to incorporate the features of finite 

deformation theory. Novoshilov[4] develops several versions of nonlinear theory that 

differ in complexity depending on the requirements. For problems with small strains and 

rotations the method described in Brown[5] is adequate. But, for large rotations it is 



necessary to move up a step in complexity. In the following development, the strains are 

still considered to be small compared to unity. This permits the use of a formulation that 

is midway in complexity between those used in [5] and the general finite deformation 

equations.  

 

Novoshilov’s Small Strain, Large Rotation Equations  

 One of the greatest difficulties in working with this particular formulation of finite 

deformation theory is that one must think about the problem from the standpoint of two 

coordinate systems – the x-y-z coordinate system in which the problem is defined and 

another coordinate system which rotates with the deformation of the web surface. The 

essence of the method is to define the strains and stresses of the deformed body in terms 

of the undeformed coordinates, x and y. This makes it very easy to lose sight of the 

physical meaning of the quantities being calculated. For example, u, v and w are defined 

as displacements in the undeformed coordinates, x, y and z. Their derivatives relative to x 

and y are then used to define strains that apply to the deformed coordinates. So, it is 

always necessary to keep in mind whether a particular quantity is to be interpreted in 

terms of undeformed or deformed coordinates and to also define the direction cosines that 

permit transformation from one coordinate system to the other. 

 

 It should also be noted that the assumption of small strain makes it possible to 

assume that the deformed coordinate system remains orthogonal. Therefore, only 

rotations need be considered when transforming from one system to the other. 

 Strain definitions. These define the strains relative to the deformed coordinates. 
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Deformed y strain 
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 Equilibrium equations. The stresses, xx , yy and xy are referred to the deformed 

coordinate system. The terms within square brackets are the projections of these stresses 

onto the undeformed coordinates. 
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 It might be less confusing if Novoshilov had used different subscripts for the stresses 

and strains that are referred to the deformed coordinate system. Since his work is so 

fundamental to this model, I’ve preserved his notation to avoid confusing those who may 



want to refer to it. In defense of Novoshilov, however, he does go to some pains to 

explain the physical interpretation of his equations at many points throughout his book. 

 

 Throughout the remainder of this paper the subscripts x and y, when applied to the 

variables u, v, w, will indicate partial differentiation relative to that coordinate. 

 Direction cosines. Table 1 lists the cosines of the angles between the unit vectors of 

the deformed and undeformed coordinates. 
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Table 1 – Direction cosines 

 

The unit vectors i1 and i2 will be in the plane of the deformed web. Their direction will 

vary with x-y location.  Coordinate i3 will be orthogonal to the other two. It is not 

important to the analysis because a fundamental assumption in a two-dimensional model 

is that stresses perpendicular to the surface are zero. 

 

 Definitions of stress. These stresses are referred to the deformed coordinate system. 

For example, xx is not the stress in the x direction. It is in the direction of a fiber in the 

deformed body that was parallel to the x-axis before deformation. 
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Verification.  

 The mathematics was checked in the following way. Boundary conditions in the 

modeling software1 were configured to rotate a stretched membrane about the x-axis 

without altering the stretching. The arrangement is shown in Figure 2 . 

 

 While in the horizontal position, the ends parallel with the y-axis are clamped in the 

y and z directions [v = 0, w = 0]. In the x direction, the clamped edges are fixed at one 

end [u = 0] and displaced at the other [u = x]. The edges parallel to x are left free. After 

running this case and collecting the results, a rigid body rotation was applied by changing 

the displacements in v and w at the clamped ends [v = ycos() – y and w = ysin()]. 

Everything else was left the same. If the model works, the stress fields referred to the 

deformed coordinates should be the same. Results for xx are shown in Figure 3. The 

membrane is ½ m by ½ meter by 0.1 mm thick, with a modulus of 109 Pa. The 

displacement, x is 1 mm.  

                                                           
1 FlexPDE 5.0.15 from PDE Solutions, Sunol, CA 



 Figures 3 and 4 show identical stress fields as they should, because a rigid body 

rotation should not alter the stresses. The yy stresses behave the same way. 
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 in Figure 5 is within 0.13 percent of 30 degrees at 

all locations. This is also as it should be. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2 – Test Case  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3 – Rotated 0 degrees 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4 – Rotated 30 degrees 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5 – The inverse cosine of 
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 Effect of Twist on Boundary Shape. As pointed out in [1], the roller boundaries of 

a twisted web are not parallel to the roller axes. Twist causes the wrap to increase at one 

edge and decrease at the other. Careful examination of Figure 1 shows this. Calculating 

the points of intersection of the web edges with the rollers is a straightforward, albeit 

tedious, exercise in numerical analysis. An iterative procedure was used for this work 

(available on request). There is also a slight CD curvature of the boundaries, due to the 

helical path they follow on the roller surfaces. This will generally be very small and will 

be ignored for purposes of this analysis.2 The initial relaxed shape then becomes a 

parallelogram. 

 

 Boundary Defect.  If a web running under tension could be stopped, frozen, cut 

along the line of entry at a roller and then unfrozen, the cut edge of the relaxed web 

would not match the original boundary. In the case of twisted webs, the effect is small. 

But, since an FEA solver makes the correction easy, it will be included. The problem is 

first solved with the relaxed boundary the same as the line of entry. Then, information 

from the solution is used to adjust the boundary to match the line of entry after 

deformation.  

 

 Spans Before and After the Twisted Span. This analysis will consider only a 

single span. To facilitate this, the previous span will be assumed to be in a state of pure 

MD stress. No attempt will be made to consider effects downstream of the span. Twisting 

a roller obviously twists both the upstream and downstream spans. So, eventually a two-

span study must be made. But, one span is enough for now.  

 

 Boundaries. Figure 6 shows the general arrangement of boundaries and coordinates. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6 – Boundaries of the model 

                                                           
2 This could be an important factor in more complex models that include wrinkling 

behavior because CD curvature at the boundaries may promote lateral instability in the 

presence of compressive stress. 



 All of the twisting is done at the upstream boundary. The downstream boundary is 

kept parallel to the y-axis with w = 0. This choice was made because the downstream 

boundary conditions are the most complicated and it seemed easier to avoid mistakes by 

keeping that boundary in the x-y plane. However, in a real world situation the 

circumstances would likely be reversed with the upstream end horizontal and the 

downstream end of the span rotated. This is an arbitrary choice, because it doesn’t change 

the results, provided that all the previous spans are assumed to be in a state of pure MD 

stress and rotated (without twisting) into alignment with the upstream boundary. 

 

 At the upstream end, the v and w displacements will be used to twist the web through 

an angle, , while u is kept fixed. 

 

 Since there are three variables, u, v and w, three boundary conditions are required at 

each edge. 

 

 Lateral edge boundary conditions. The lateral edges are free of constraint. So, 

there will be zero normal stress and zero tangential shear. Therefore, the terms in the 

square brackets of the y derivative terms of (8) and (9) are set to zero. 
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 There is no y derivative in (10). This implies that the y variation in w is completely 

determined by the x derivative in (10) and the conditions at the other boundaries. In other 

words, (10) and the boundary conditions on w at the rollers define a surface to which the 

membrane conforms. It is possible with FlexPDE to specify this requirement and allow it 

to solve for the surface. 

 

 Upstream boundary conditions. At the upstream roller, where the rotation will be 

established, it is necessary to specify all three boundary conditions in terms of 

displacements, u, v, and w. Displacement u is easy, it is fixed at zero. So, 

Boundary condition 1                             0u    . (16)  

 Displacements v and w require careful treatment because they are, by definition, 

referred to the undeformed coordinate system and yet they depend on the MD strain in 

the previous span (because it contracts in width), which is defined in terms of the 

deformed coordinate system. It will be assumed that the MD stress in the previous span is 

known to be equal to some value, xo. Then the MD strain there will be xo = xo/E , and 

the CD strain will be yo = -xo. In a linear elasticity analysis, the displacement v at the 

upstream boundary could now be calculated as v = y(-xo). This is not possible in the 

case of nonlinear analysis. The CD strain is defined by equation (6) . Therefore, 
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 This is an ordinary differential equation that can be solved for v. It will be solved 

with the web in a horizontal position and then the rotation will be applied. The second 

term in the square brackets is zero because u = 0. The third term in the brackets is also 

zero because the web is in a horizontal position (zero slope along y). Therefore, 

  1 1 2 xo

dv

dy
     (18) 



Figure 6 illustrates how rotation affects v. From this it is apparent that, 

Boundary condition 2      1 2 cosxov y y     (19) 

and 

Boundary conditon 3     1 2 sin( )xow y     (20) 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

Figure 7 – Finding v and w 

Downstream boundary conditions. At the downstream roller the z-axis 

displacement is zero. So, 

Boundary condition 1                               0w    (21) 

The normal strain and normal entry rules provide the other two conditions. The 

normal entry rule states that: in a steady state, the path of a particle in the web aligns 

itself with the direction of the roller surface velocity (normal to the axis of the roller). In 

the undeformed state, the particle paths will be parallel to the x-axis. So, the vector 

defining the direction of the path in the deformed state is the direction of the unit vector 

for i1. Since all the quantities in the calculation must be referred to the undeformed 

coordinate system, i1 must be expressed in terms of the undeformed unit vectors, x , y . 

Using the direction cosines of Table 1, the vector P  for the particle path will be, 
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Therefore, the tangent of the entry angle, , (which must become zero in the steady state) 

is, 

Boundary condition 2                    tan 0
1

x

x

v

u
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 Equation (23) is the second boundary condition for the downstream roller and is 

identical to the result found in reference 5, using a completely different approach. 

 

 The fact that the lines of contact with the rollers are not parallel with the roller axes 

has no effect on the application of the normal entry rule. 

 



The normal strain rule states that: in a steady state, the ratio of the stretched lengths 

of an infinitesimal patch of the web at two successive rollers is proportional to the 

respective ratios of the web velocities at the two rollers. In other words, if the web speeds 

up by 1% relative to the previous roller, it will have to elongate by 1% to insure that the 

mass flow is the same at the two locations. Mathematically, this may be stated as, 
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 Where xu and xd are the strains in the direction of the surface velocities of the 

rollers (normal to the axes of the rollers) and Vxu and Vxd are the respective velocities 

(also normal to the axes of the rollers). It is shown in reference 5 that the cross sectional 

area and density change by precisely the right amount to make this happen at each point 

across the web and that, furthermore, it must happen in order to satisfy the principle of 

conservation of mass. The requirement that the strains be the components normal to the 

roller axis is insured by the normal entry rule. Referring to Table 1, if vx is zero then the 

angle between the deformed axis, i1, and y must be 90 degrees. 

 

 Equation (24) makes it possible to define the strain, xx at the downstream roller in 

terms of the strain at the entry to the upstream roller, xo and the ratio of the 

circumferential velocities, Vu upstream and Vd downstream. 

Boundary condition 3                    1 1u

xx xo

d

V

V
      (25) 

 Equation (25) is the third boundary condition for the downstream roller3. Since the 

strains are the values in the deformed web and are defined in terms of the undeformed 

coordinates, (25) needs no further transformation. 

TYPICAL RESULTS 

 Typical results are illustrated for a PET web described in Good and Straughan’s 

paper[1]. Test parameters are shown in the captions. 

 

 Figures 8 and 9 show contour plots of the principal stresses. The principal minimum 

stress (CD) in Figure 9 is compressive for almost the entire area of the span. [The 

principal angle relative to the x-axis varies from -4 to 4 degrees]. The principal maximum 

stress (MD) shows the expected parabolic profile, except near the roller where the normal 

entry and normal strain rules have must be satisfied. 

 

 Figures 10 and 11 show contour plots for the same PET web with a longer span. As 

the span lengthens, the CD compressive stress is localized at the roller, becoming zero in 

the middle section. The MD stress has a parabolic profile throughout its length. This is 

quite different than the flat web model. In the flat web, St. Venant’s principle causes the 

MD profile to become uniform at cross sections that are not near the ends. Persistence of 

the profile in the FEA model is not an artifact of the analysis method. The topology of the 

3D surface causes the MD strain profile to be distributed unchanged along the length.   

                                                           
3 Equation (25) is different than the result presented in reference 5. In the earlier work an 

unnecessary approximation was used. It had no material effect on the results, because it 

produces nearly identical values for xx . See Appendix A for an explanation. 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8 – Principal minimum stress (CD) PET web 

Twist = 5 degrees. length = 0.108 m, width = 0.152 m, thickness = 23.4e-6 m, modulus = 

4.13e9 Pa, tension = 26.7 N,  = 0.3, roller diameter = 0.0736 m.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9 – Principal maximum stress (MD) – Same web as in Figure 8 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10 – CD Stress for same web as in figure 8 except L – 0.432 m 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11 MD Stress – web same as figure 8 except L = 0.432 m 

 



COMPARISON WITH AN EXPERIMENT. 

 

 Good and Straughan[1] performed a series of excellent experiments in which they 

increased the angle of twist until wrinkles occurred. The span length and tension were 

varied. In the paper they also developed a model based on the assumption that the stresses 

of a twisted web could be approximated in a flat web by applying an appropriately 

shaped MD stress profile to the ends. This was used in conjunction with Timoshenko’s[6] 

critical stress, cr, for buckling of a cylinder to predict the angle of wrinkling, cr. In the 

following discussion, this will be called the G-S model. It will be interesting to compare 

the experimental data with the results of the G-S model the FEA model of the present 

paper.  

 

 The G-S model was organized to predict the angle of wrinkling, which was then 

compared with the observed angle. To facilitate inclusion of the FEA model in the 

comparison, the equations were rearranged to calculate the CD stress, y, existing at the 

observed angle of wrinkling, cr. The headings in the tables are: L = span length; xx = 

Nominal MD stress;  cr = Observed angle of twist at which wrinkles appeared; cr = 

Theoretical CD stress at which a cylinder will buckle; yA  = Theoretical CD stress from 

the G-S model;  yF = Theoretical CD stress from FEA model with the same inputs as the 

G-S model; yA/yF = Ratio of the G-S and FEA models CD stresses; cr/L = Ratio of the 

observed critical angle of twist to the span length. All of the CD stresses were peak 

values at the roller. 

 

 The last entry in Table 3 is a calculation to check the rearranged math. Unlike the 

other rows, the angle used for cr was the value predicted by the G-S model rather than 

the observed value. This resulted in yG being equal to cr  as it should have.  

 

 

 L 
(m) 

xx 

(Mpa) 

cr 

(Deg.) 

cr 

(Mpa) 

yG 

G-S 
Flat 

(Mpa) 

yF 

FEA  
Twisted 

(Mpa) 

yG/yF cr/L 
(Deg./m) 

1 0.108 15 4.1 -1.59 -1.85 -0.86 2.2 38 

2 0.108 30 4.6 -1.59 -2.33 -1.1 2.1 43 

3 0.464 15 10 -1.59 -2.0 -0.27 7.4 22 

4 0.464 30 9.8 -1.59 -1.92 -0.27 7.0 21 

Table 2  - PET 

Width = 0.152 m, thickness = 23.4e-6 m, modulus = 4.13e9 Pa,  = 0.3, 

roller diameter = 0.0736 m, uncoated aluminum surface 

 

 

 

 

 

 

 

 

 

 



 L 
(m) 

xx 
(Mpa) 

cr 
(Deg.) 

cr 
(Mpa) 

yG 

G-S 

Flat 

(Mpa) 

yF 

FEA  

Twisted 

(Mpa) 

yG/yF cr/L 
(Deg/m) 

5 0.127 5 2.7 -1.21 -0.76 -0.28 2.7 21.3 

6 0.127 15 3.0 -1.21 -0.94 -0.35 2.7 23.6 

7 0.127 25 3.0 -1.21 -0.94 -0.35 2.7 23.6 

8 0.432 5 7.4 -1.21 -1.29 -0.18 7.2 17.3 

9 0.432 15 8.8 -1.21 -1.82 -0.26 7.0 20.4 

10 0.432 25 9.0 -1.21 -1.90 -0.28 6.8 20.8 

11 0.584 5 10.8 -1.21 -1.28 -0.21 6.1 18.5 

12 0.584 15 11.8 -1.21 -1.53 -0.25 6.1 20.2 

13 0.584 25 12 -1.21 -1.59 -0.27 5.9 20.5 

 0.584 5 10.5 -1.21 -1.21    

Table 3 – PET  

Width = 0.152 m, thickness = 17.8e-6 m, modulus = 4.13e9 Pa,  = 0.3,  

roller diameter = 0.0736 m, high friction coating on roller 

 

 

 L 
(m) 

xx 

(Mpa) 

cr 

(Deg.) 

cr 

(Mpa) 

yG 

G-S 

Flat 
(Mpa) 

yF 

FEA  

Twisted 
(Mpa) 

yG/yF cr/L 
(Deg./m) 

14 0.127 13 1.7 -0.96 -0.65 -0.22 3.0 13.5 

15 0.127 26 2.1 -0.96 -0.99 -0.25 4.0 16.5 

16 0.127 40 2.7 -0.96 -1.63 -0.58 2.8 20.5 

17 0.584 13 6.5 -0.96 -1.00 -0.16 6.3 11.1 

18 0.584 26 7.8 -0.96 -1.44 -0.23 6.3 13.4 

19 0.584 40 7.9 -0.96 -1.48 -0.24 6.2 13.5 

Table 4– PEN  

Width = 0.152 m, thickness = 6.6e-6 m, modulus = 8.87e9 Pa,  = 0.3, 

roller diameter = 0.0736 m, high friction coating on roller 

 

 

 L 
(m) 

xx 

(Mpa) 

cr 

(Deg.) 

cr 

(Mpa) 

yG 

G-S 
Flat 

(Mpa) 

yF 

FEA  
Twisted 

(Mpa) 

yG/yF cr/L 
(Deg./m) 

20 0.127 3.9 3.5 -0.28 -0.11 -0.036 3.1 27.6 

21 0.127 13.1 5.0 -0.28 -0.21 -0.076 2.8 39.4 

22 0.584 3.9 13.5 -0.28 -0.17 -0.025 6.8 19.7 

23 0.584 13.1 15.0 -0.28 -0.20 -0.032 6.3 22.4 

Table 5 – Polyethylene 

Width = 0.152 m, thickness = 50.8e-6 m, modulus = 0.34e9 Pa,  = 0.3, 

roller diameter = 0.0736 m, high friction coating on roller 

 

 

 



CONCLUSIONS.  
 

1. The FEA model shows significantly lower levels of CD compressive stress at the 

critical angle than the G-S model. They are 1/3 to 1/7 as large. 

2. With the exceptions of tests 1, 2 and 16, the FEA model produced CD stresses that 

varied less with tension and span length. 

3. The ratio of the stress magnitudes between two models changes with span length. 

For a given length, the ratio is approximately the same across all the tests. This may 

be due to the difference in the behavior of the MD stress profiles in the two models. 

The FEA model tends to have a parabolic stress profile throughout its length whereas 

the G-S model does not. The difference becomes more significant for long spans. 

4. If the FEA model is more accurate in predicting the CD stress, then a new buckling 

criterion must be developed. Something along the lines of the criterion used by 

Good, Kedl and Shelton[7] for shear wrinkling may be appropriate. 

5. Both models show very little change in CD stress levels with tension. 

6. Until someone solves the problem of measuring stress levels in thin webs, the 

wrinkling threshold will probably remain the best validity test for twisted web 

models.  

7. There is nothing in the FEA modeling technique to detect CD elastic instability. 

More work should be done to incorporate the features of the von Karman equations. 

 

It should be emphasized that the G-S model is still the best tool available for predicting 

the onset of wrinkling with twist. It may overestimate the magnitude of the CD stress. 

But if that is the case, the buckling criterion must be doing the same thing because the 

results agree well with experiment.  

 

A Hypothesis to explain CD compressive stress with twist 
  Both the experiments and the models indicate that the compressive stress doesn’t 

change much with the MD tension? One likely explanation is that the compressive CD 

stress is primarily due to the effect of the normal entry rule at the roller.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12 – Projection of deformed boundaries on x-y plane 

 



 Figure 12 shows the shape of the deformed web projected on the x-y plane. The twist 

has been increased to 10 degrees and the y displacement scaled up so that the shape is 

easier to see. The upstream twist has caused the particle paths to become curved in the 

vicinity of the downstream boundary. Keep in mind that the downstream boundary is in 

the x-y plane. So, there is “real” curvature there. The curvature causes the normal entry 

rule to create the lateral compression (the slanted web boundary caused by its 

parallelogram shape has nothing to do with this). If traction permits, the web is 

compressed laterally until the particle paths are bent into alignment with the velocity 

vector of the roller surface. 

 

 To check this hypothesis, the model was modified at the downstream boundary to 

eliminate the normal entry condition in two different ways. First, a boundary condition 

for displacement v was applied, matching that at the upstream roller. Displacement, w 

was zero as before. Displacement u was chosen to create a uniform MD tension prior to 

twisting. So, the model was equivalent to a web running under tension between parallel 

rollers that is then stopped and twisted. Under these conditions additional MD stress 

produced by the twisting causes the web to neck down at the roller, producing tensile CD 

stress. Next, the model was changed so that there would be no axial traction at the 

downstream roller – a free edge in the y direction. The other boundary conditions were 

the same as the first case. There was compressive CD stress at the roller. But, it was an 

order of magnitude smaller than with the normal entry condition active 

 

Slipping 
 In almost all of the tests described in [1] the critical angle of twist did not change 

significantly with tension. There were some cases where this was not true.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13 – Friction and stress rates at 26.7 N 

Twist = 5 degrees. length = 0.108 m, width = 0.152 m, thickness = 23.4e-6 m, modulus = 

4.13e9 Pa, tension = 26.7 N,  = 0.3, roller diameter = 0.0736 m. 
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 If the tension was low, it sometimes took much more twist (as much as two times) to 

create a wrinkle than at higher tensions. In a graph with critical twist angle on the 

ordinate and tension on the abscissa, the twist angle would start high and then become 

asymptotic to a horizontal line as the tension increased. The authors suggested that low 

friction between the web and roller might have allowed troughs to flatten at the roller. 

This conclusion is supported by Figure 13, which shows a plot of the magnitude of the 

stress and friction rates at each point across the web.  

 

 The values in Figure 13 were computed as part of the FEA analysis, based on 

unpublished work by the author. The stress rate (rate in terms of distance, Pa/m) is the 

combined effect of the axial and circumferential stresses that are available to overcome 

friction. The friction rate is the maximum value of the radial stress (normal to the web 

surface) times the coefficient of friction divided by the radius of curvature of the roller 

surface. [The direction of the maximum friction rate is not necessarily circumferential. 

So, the radius of curvature is usually larger than the cylinder radius.] At any location 

where the stress rate is larger than the friction rate, local slipping may occur. The friction 

rate in Figure 12 is based on a friction coefficient of 0.3. It is evident that the edges can 

slip and that it would take only a slight change in either coefficient or stress for any of the 

other points to slip. In all of the other cases where this behavior was observed, the FEA 

analysis produced data like Figure 13 or worse (with the friction curve below the stress 

curve). In all other cases where “normal” behavior was observed there was ample 

separation between the stress and friction rate curves. 

 

APPENDIX A 

Alternative Derivation of Normal Strain Rule 

And an Unnecessary Approximation 

 

 In the diagram below, the web is assumed to be running in a steady state with good 

traction on the rollers.  

 

 

 

 

 

 

 

 

 

 

 

Figure 14 

 At the entry to the rollers, the normal entry rule requires that the particle paths be 

normal to the axis of rotation of a roller surface. The shaded area at the entry to the 

upstream roller represents an infinitesimal area with sides parallel to two particle paths. 

The shaded area at the entry to the downstream roller is the same portion of web at the 

moment that it enters the roller there. The roller surface velocities are Vu and Vd. Δx is the 

relaxed length of the area in direction x. εxu is the strain normal to the upstream roller. εxd 

is the strain normal to the downstream roller. Conservation of mass requires that the mass 

flow into and out of the span for any portion of web between two particle paths be 



constant. Otherwise, material would accumulate in the span and a steady state would not 

exist. For this to be true, each area must travel past the line of roller contact in the same 

length of time. Therefore, 

                                       
 1 xu ux V t   

  (26) 

and   

                                        
 1 xd dx V t   

  (27) 

Equating (26) and (27) and solving for εxd 

                                       

 1 1d

xd xu

u

V

V
   

 (28) 

 

 Equation (28) is not the same as that developed in “A New Method for Analyzing the 

Deformation and Lateral Translation of a Moving Web”[5]. However, the two equations 

are numerically equivalent for small strains. In the method of derivation used in [5], 

separate expressions were developed for the mass flows at the upstream and downstream 

rollers. For example, the mass flow upstream is, 
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 (29) 

where dy is the increment of width, h is the thickness and ρo is relaxed density. The strain 

in the denominator looked like a potential nonlinearity. So, the approximation, 

                                               
   

1
1 1xu xu 


  

 (30) 

was used. This led to the relationship, 

                                                 

 1 1u

xd xu

d

V

V
   

. (31) 

 Although (31) is algebraically different than (28), the numerical difference in εxd is 

insignificant so long as εxu is very small and Vu/Vd is close to 1.  Both of these 

requirements are met in any practical web handling problem. Note that when Vu/Vd =1 

they are exactly equivalent and that was the value assumed for all the examples in the 

paper. Nevertheless, the concern about a nonlinearity was misguided. Leaving (29) alone, 

along with its companion expression downstream, would have led to (28) which is exact 

and linear. 
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