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ABSTRACT 

It’s obvious that when a web changes its lateral position at a roller, subsequent spans 
will be affected. Less obvious, is the fact that transient stress variations will also affect 
downstream spans. Multi-span models are designed to account for both effects by 
incorporating a method for transferring the lateral displacements and deformations over 
rollers.  In her 1987 thesis [1] and a follow up paper in the IEEE Transactions [2], Lisa 
Sievers described three multi-span models. 

• Convecting string with zero bending stiffness 
• Euler-Bernoulli beam with bending stiffness and no shear 
• Timoshenko beam with both bending and shear 
Both beam models were capable of modeling a phenomenon called weave 

regeneration in which an oscillatory lateral disturbance reappears downstream of a web 
guide which had corrected it. The Timoshenko beam showed better qualitative 
agreement. 

Then, in 1989 Young, Shelton & Kardamilas (YSK) [3] published a description of an 
Euler-Bernoulli multi-span model and applied it to common roller configurations such as 
pairs of parallel rollers, displacement guides and steering guides. It transfer’s lateral 
bending deformation across rollers and is functionally identical to the Sievers Euler 
Bernoulli model. A notable feature of the YSK model is the way it uses transfer functions 
to interconnect the spans. 

The original goal for this paper was to recast the Sievers Timoshenko model into the 
same analytical form as the YSK model, develop a similar interconnection strategy and 
then compare the two models quantitatively. A YSK-type Timoshenko model has been 
developed, and it looks quite plausible. However, it produces a value for the curvature 
factor that doesn’t make sense. After exhaustive troubleshooting, I’ve concluded that the 
problem is not due to a procedural error; but is more likely something of a conceptual 
nature. 

As an alternative to the original plan I will 1) describe the problem with the YSK-
type Timoshenko model and 2) answer the question, “How much difference does shear 
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make.” with a quantitative comparison between the Euler-Bernoulli model of the YSK 
paper and a modified version of the Sievers Timoshenko model. A detailed derivation of 
the modified Sievers Timoshenko model is described in a companion paper [4] presented 
at this conference. 

NOMENCLATURE 

A cross sectional area of web 
a 1 + nT/AG  
E elastic modulus 
G shear modulus 
h thickness of web 
I area moment of inertia 
J rotational inertia 
K constant in elastic curve O. D. E. 
Kc curvature constant 
L span length 
m mass per unit length 
n Shear coefficient for Timoshenko beam 
rc distance from roller to apparent pivot point of bent web 
t time 
T tension 
vo   web velocity in machine direction 
vy lateral web velocity 
x distance along length of web 
y lateral displacement of web 
y0 lateral web displacement at upstream roller 
yL lateral web displacement at downstream roller 
γ angle of roller axis 
θ slope of web 
ρ density 
ϕ rotation of cross section 
ψ shear angle 
0 subscript indicating value of variable at x = 0 
L subscript indicating value of variable at x = L 
 
In this paper and much of the current literature, variables are referenced to spans. A 

variable labeled y02 would indicate the value of y at x = 0 in span 2. 

CURVATURE FACTOR 

The curvature factor, which will be explained below, is a good indicator of model 
validity because it relies in an intimate way on the shape of the web when it is controlled 
by the normal entry rule. Shelton derived and published it for his simplest single span 
model in 1968 [5] and it shows up in more sophisticated dynamic models as the static 
gain factor in transfer functions. 

At a misaligned roller, a web will “walk” laterally on the roller until it is 
perpendicular to the roller axis. To do this, it must bend. When viewed from the 
perspective of the portion of web near the misaligned roller, the web, in its steady state, 
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appears to have pivoted about a point upstream. The effective radius rc of the pivoting 
motion is equal to KcL, where Kc is the curvature factor. For a Timoshenko beam Kc is, 

 1 sinh( ) cosh( )
1 cosh( )
KL KLa KL

Kc KL a KL
−

=
−

 {1} 

and, 

 1T nTK a
EIa AG

= = +  {2} 

T is tension in units of force, E is the elastic modulus, I is the area moment of inertia and 
G is the shear modulus. For the Timoshenko beam n = 1.2. For a Euler Bernoulli beam 
the same equations are used, but n = 0. 
 

 

 

 

 

 

 

 

 

 
 

Figure 1 
Curvature factor, Kc 

 

Figure 2 is a recreation of Figure 2.4.6 in Shelton’s dissertation and shows how Kc 
varies with KL and with the shear factor nT/AG. It can be seen that Kc ranges from a 
minimum value of 0.67 to a maximum of 1.0. For large KL, Kc approaches 1.0 because all 
the bending occurs near the upstream roller. For small KL with shear, Kc again 
approaches 1.0 because the web deforms more like a parallelogram with a sharp bend at 
the upstream roller.  

A remote pivot steering guide provides its optimum time response when the pivot 
center of the guide roller coincides with the center of web rotation. 

Four data points are marked on Figure 2, parameters for them are as follows. 
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        L = tabled below T = 44.5 lbf 
h = 0.0034 inches E = 550,000 psi 
W = 44.5 inches nT/AG = 0.0017 

 
L(inches) nT/AG KL Kc Symbol 

10  0.0017 0.018 0.97 ○ 
22 0.0017 0.040 0.89 □ 
40 0.0017 0.072 0.80 ∆ 

120 0.0017 0.216 0.69 ◊ 
 

Table 1 
Parameters for four points on Figure 2 

 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 

 
 
 
 

Figure 2 
Effect of shear and KL on Kc 

SHEAR IN THE TIMOSHENKO MODEL 

 

 
 
 
 
 
 

Figure 3  
Relationship of Slope, shear and rotation of cross section 

                          ∂y/∂x = slope , shear angleψ = , angle of cross sectionφ = rotation 
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Shear and bending deflections are additive as illustrated in Figure 3. The relationship 
shown in {3} is fundamental to everything that follows. The total slope is equal to the 
sum of bending and shear1. 

 y
x

φ ψ
∂

= +
∂

     {3} 

SUMMARY OF SIEVERS’ EQUATIONS 

Hamilton’s principle is used to derive the governing equations. They are, 

 ( )22 0AG AGm y v y v y T yo o n n
φ ′ ′′ ′′ ′− + + + + − = 

 
   {4} 

 ( ) ( )22 0AGJ v v EI yo o n
φ φ φ φ φ′ ′′ ′′ ′+ + + + − =   {5} 

In this equation, y is the lateral deflection, m is the mass per unit of length, vo is the 
transport velocity in the machine direction, vy is the velocity of lateral deflection, J is the 
rotational inertia per unit of length, ϕ is the rotation of cross section, A is the cross 
sectional area, G is the shear modulus, n is the shear coefficient, E is Young’s modulus 
and I is the area moment of inertia. The time derivatives in the equations have been 
transformed to a Eulerian frame of reference. The dot represents differentiation with 
respect t and a single quote mark indicates differentiation with respect to x.  

THE STATIC EQUATION FOR WEB SHAPE 

The leftmost acceleration terms in {4} and {5} can be eliminated because the 
imposed elastic deformations occur at frequencies that are too low for their inertial 
reactions to be significant. 

 0
AGAG T y
nn

φ  ′′ ′+ − = 
 

 {6} 

 ( ) 0
AG

EI y
n

φ φ′′ ′+ − =  {7} 

These equations can be reduced to a single expression involving only one dependent 
variable. Equation {6}is solved for φ′ and then differentiated by x to produce values for 
φ′′ and φ′′′ which are used to eliminate φ from {7}after it is differentiated once with 
respect to x. The result is the familiar equation, 

 
4 22 04 2

d y d yK
dx dx

− =  {8} 

 

                                                           
 
 
1 Note: Sievers used the symbol θ to represent rotation of the cross section rotation 

(which she called face angle). In this paper ϕ is used, because θ is used in most of the 
literature as another way to represent ∂y/∂x. 
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where, 

 2

1

TK
nTEI
AG

=
 + 
 

 {9} 

The solution to {8}will be familiar to anyone who has studied lateral dynamics. 

 ( ) ( )( ) sinh cosh1 2 3 4y x C Kx C Kx C x C= + + +  {10} 

Static boundary conditions 
The coefficients of {10}are determined from static boundary conditions. Four are 

needed. Lateral position at each end is an obvious choice for all three models and for a 
multi-span model it must obviously be continuous across rollers. That takes care of two 
conditions. For the Euler Bernoulli beam, slope at each end is the other logical choice 
because it will also be continuous across a roller. So, the Euler Bernoulli boundary 
conditions are, 

 
0 0

00

y y y yx x L L
dy dy

w wLdx dxx x L
θ θ

= == =

= =
= =

 {11} 

where L is the length of the span.  

Timoshenko static boundary conditions 
For the Timoshenko beam, the presence of shear makes it possible for slope to be 

discontinuous across a roller. So, it isn’t preserved as the web passes from entry to exit. 
However, the cross section rotation is preserved, making it the logical choice for the other 
pair of boundary conditions. 

To express the boundary conditions for the Timoshenko beam, expressions are 
needed for cross section rotation ϕ and shear angle ψ. First, differentiate {6} with respect 
to x and solve for φ′′ . 

 
2 3

2 3
d d y

a
dx dx

φ
=  {12} 

where 

 1
nT

a
AG

= +  {13} 

Replacing y φ′ − in {7}with ψ and using {12}, 

 
3

3
n d y

EIa
AG dx

ψ = −  {14} 

Now, using {3}, 
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3

3
dy n d y

EIa
dx AG dx

φ = +  {15} 

The constant EIan/AG may be expressed as, 

 

( )

( )
2 1 2 1

12 6
2 1

n W A n
EIa E a W n aEAG A

µ

µ

= = +

+

 {16} 

where W is the web width and μ is Poisson’s ratio. So, ϕ becomes, 

 
32
3

dy d y
L b

dx dx
φ = +  {17} 

where, 

 ( )
21

126
W

b n a
L

µ= +  {18} 

The constant in {16}has been divided by 2L to nondimensionalize it. 
Now, the Timoshenko beam boundary conditions can be defined. They are, 

 
0 0

3 32 2
03 30 0

y y y yx x L L

dy d y dy d yL b L b Ldx dxx x Ldx dxx x L
φ φ

= == =

+ = + =
= == =

 {19} 

Solving for the coefficients of {10} 
Differentiating {10}provides expressions for the derivatives in ϕ0 and ϕL, 

 ( )cosh sinh( )3 1 2
dy

C C K Kx C K Kx
dx

= + +  {20} 

 ( )
3 3 3cosh sinh( )1 23

d y
C K Kx C K Kx

dx
= +  {21} 

Using {10} again for y0 and yL provides the four boundary conditions. 
So, the boundary conditions of the Timoshenko beam model will be, 

 
( ) ( )( )

( ) ( )

0 3 1

cosh sinh3 1 2

0 2 4

sinh cosh1 2 3 4

C C Ka

C Ka C KL C KLL

y C C

y C KL C KL C L CL

φ

φ

= +

= + +

= +

= + + +

 {22} 

These are solved simultaneously for C1, C2, C3 and C4. 
Inserting these values into {10}and collecting terms, 

 ( ) ( ) ( ) ( )( ) , , ,00 4 5 0 6y x y y y g x L g x L g x LL Lφ φ= + − + +  {23} 
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where, 

 

( ) ( )

( )

( ) [cosh( ) cosh( ) cosh( ) sinh( ) 1] /4

[ cosh( ) 1 cosh( ) 1 sinh( )5( )

sinh( ) sinh( )]/

( ) [sinh( ) sinh( ) sinh( ) cosh( ) 16

( )(cosh( ) 1)] /

g x Kx KL KL Kx Kax KL R

g KLa Kx Kax KL Kxx

KL Kx KL KaR

g x Kx KL KL Kx KLa KL Kx

Ka L x KL KaR

= + − − − −

= − − − −

− − +

= − + − − − −

+ − −

 {24} 

and, 

 ( )sinh( ) 2 cosh( 1R KLa KL KL= − −  {25} 

Following the example of Young, Shelton and Kardimilas (YSK) [3], y0 appears 
twice in expression {23}. This reduces the number of shape factors from four to three. 

A FORK IN THE ROAD 

It is at this point where the analysis diverges from the approach used by Sievers. In 
her method it is unnecessary to deal with the details of ϕ. However, to get a solution in 
terms of transfer functions, ϕ must be expressed in terms of yL and its derivatives.  

The differences are illustrated graphically in the block diagrams of Figure 4. 
 
 
 

  

 
 
 
 
 
 
 
 
 
 

Figure 4 
Graphic illustrations of the YSK and Sievers methods 

 
In the YSK method, only the lateral displacement is passed to the next span. Since all of 
the information about its derivatives is implicit in the lateral displacement, it is possible 
to reconstruct the cross section rotation from the previous span by mathematical 
manipulation. This may seem redundant, but it has the advantage of making it possible to 
describe the system with transfer functions. 
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THE YSK METHOD 

The goal is to create a time-based O. D. E. that can be solved for yL. It seems 
reasonable to start with a spatial derivative of equation {23} and find a way to replace 
spatial derivatives of yL with time derivatives. The first spatial derivative of {22}isn’t 
suitable because two of the main terms are zero at y = L. The next best choice is the 
second derivative. 

 ( )
2

31 2
0 02 2

dy gg gL y yL L L Ldx L
φ φ= − + +  {26} 

Where, 

 

( ) ( )
( )

( ) ( )
( )

( ) ( )
( )

2 2 cosh( ) 12 ( )1 4 sinh( ) 2 cosh( ) 1

cosh( ) sinh( )
( )2 5 sinh( ) 2 cosh( ) 1

sinh( )
( )3 6 sinh( ) 2 cosh( ) 1

K L a KL
g L g L

a KLa KL KL

KL KLa KL KL
g L g L

a KLa KL KL

KL KL KLa
g L g L

a KLa KL KL

−
= =

− −  

−
= =

− −  

−
= =

− −  

′′

′′

′′

 {27} 

 
Using {17}, 

 
3

2
3

dy d yL LL bL dx dx
φ = +  {28} 

and, 

 
3

20 0
0 3

dy d y
L b

dx dx
φ = +  {29} 

Using {28} and {29} , equation {26} can be converted into a relationship involving 
only yL,,  y0 and their spatial derivatives. 

 ( )
2 33

31 22 20 0
02 2 3 3

dy dy d ydy d y gg gL L Ly y L b L bL L Ldx dxdx L dx dx

  
  = − + + + +
  

   
 {30} 

Replacement of spatial derivatives with time derivatives 
Relationships are needed between spatial and time derivatives. The normal entry rule 
provides one of them. It is, 

 
y yL Lv Lot x

x L

γ
 

∂ ∂ 
= − ∂ ∂ 

= 

 {31} 

Adding the velocity of the roller  
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dy dzyL LLv Lodt dtx

x L

γ
 

∂ 
= − + ∂ 

= 

 {32} 

where vo is the transport velocity of the web, γL is the angular misalignment of the roller, 
and zL is the lateral velocity of the roller relative to ground (it may be a web guide roller). 
Solving {32}for ∂yL/∂x, 

 1y dz dyL L L
Lvx dt dto

x L
γ

 ∂  = − +
 ∂  =

 {33} 

Using the chain rule, the second spatial derivative is, 

 
2 2 2( , ) ( , ) ( , ) 22 02 2 2

d y y x t y x t y x t
v vo ox tdt t x

∂ ∂ ∂
= + + =

∂ ∂∂ ∂
 {34} 

The cross derivative can be eliminated by taking the spatial derivative of{31}, 

 
2 2

2
y yL Lvox t x x L

∂ ∂
= −

∂ ∂ ∂ =

 {35} 

Substituting {35}in{34}, 

 
2 2

2
2 2

d y yL Lvodt x
x L

 
∂ 

=  
∂ 

= 

 {36} 

Note: In the steady state, the time derivative on the left goes to zero and {36} 
becomes a statement of the steady state 4th boundary condition discovered by Shelton. 

A similar procedure for the third derivative yields, 

 
3 3

3
3 3

d y yL Lvodt x
x L

 
∂ 

= −  
∂ 

= 

 {37} 

Note that the signs in{31}, {36}and{37} alternate. 
Adding the acceleration and jerk for the rollers, 

 

2 22
2

2 22

3 33
3

3 33

d y dzyL LLvodt dtx
x L

d y dzyL LLvodt dtx
x L

 
∂ 

= + 
∂ 

= 

 
∂ 

= + 
∂ 

= 

 {38} 

Solving {38} for the spatial derivatives yields, 
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2 2 21
2 2 2 2

3 3 31
3 3 3 3

d y d y d zL L L
dx v dt dto

d y d z d yL L L
dx v dt dto

 
 = −
 
 

 
 = −
 
 

 {39} 

Substituting{33} and {39}into{30}, 

 

( )
2 3 3

1 11 22
02 2 3 3 3

3
320 0

3

dy dz dy dz d yg gL L L L Ly y L bL L Lv dt dtdx L o v dt dto

dy d y g
L b

Ldx dx

γ
    
    = − + − + + −    
     

 
 + +
 
 

 {40} 

A basic assumption in the Timoshenko multi-span model is that ϕ0 at the exit of the 
upstream roller is equal to the value of the ϕL at the entry of that roller (with the exception 
of the effect of γ, the roller angle). Therefore, replacing the spatial derivatives with time 
derivatives in the same way as for yL will recreate ϕL from the previous span and fulfill the 
multi-span requirement. Note: The fact that the factor L2 in the ϕ0 term applies to the 
current span rather than the previous span does not ruin this relationship because it is 
cancelled by a factor of L2 in the denominator of the expression for b. The equation for 
the span, then becomes, 

( )
2 2 3 31 1 11 22

02 22 2 3 3 3

3 3
1 1 320 0 0 0

0 3 3 3

d y d z dz dy d z d yg gL L L L L Ly y L bL L Lv dt dtv L odt dt v dt dto o

dz dy d z d y g
L b

Lv dt dto v dt dto

γ

γ

      
      − = − + − + + −      

       

    
    + − + + −    
     

 {41} 

There is one last issue to resolve in{41} . If the upstream roller is misaligned (either 
accidentally or because it is part of a guiding system), γ0 will be nonzero and will not be 
the same as γL in the previous span. 

 Effect of roller axis angle on γ 
The variable γL is the projection of roller alignment onto the plane of the web. 

Assuming that the angular motion of the roller is in a plane that is parallel to the cross 
machine direction, 

 cos( ) and cos( )1 0Lγ γ α γ γ β= = −  {42} 
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Figure 5 

Relationship of plane of roller axis motion and web planes 

The transfer function 
The next step is to take the Laplace transform of equation {41}with all the initial 

conditions equal to zero. Equation {43}is the final result of collecting terms and 
substituting τ for L/V. 

There are several ways to check this result. 
1. If n is set to zero, it should become exactly equivalent to the Euler Bernoulli 

model in the YSK paper (also described nicely in a later paper by Pagilla 
and Seshradi [6]). Note: When n = 0, then b = 0 and a = 1. 

2. When the only inputs are z0 and zL with γL = γ0 = zL/L, corresponding to a 
displacement guide, the transfer function should become unity because the 
web and rollers move as a rigid body. 

3. When the only input is zL with γL = zL/L1, with the pivoting radius, L1, of the 
roller equal to (Kc)L, the static gain of the transfer function should be unity. 
This corresponds to a remote pivot steering guide with neutral steering. The 
curvature factor, Kc is defined in {1}and was derived by Shelton2 for a 
static single-span Timoshenko model. Shelton’s equation was confirmed for 
the modified Sievers model in a companion paper [4] presented at this 
conference. 

                                                           
 
 
2 The equation published by Shelton on page 64 of his dissertation (2.4.17) is 

incorrect. He informed me of the corrections in a private communication in the late ‘90s. 
The corrected equation for Kc is number {64} in Appendix A of this paper.   
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3 3 23 1 2
3 22

0
3 2 3 22 1 2 1

2 22 2

33
3 2

0
3 2 3 22 1 2 1

2 22 2

g g g
bg s s g bs s s

y y zL Lg g g g
g bs s s g bs s s

g vos bg s g

z L
g g g g

g bs s s g bs s s

τ τ
τ ττ

τ τ
τ ττ τ

τ
τ τ

γ

τ τ
τ ττ τ

   
   − − + + +
   
   = +

   
   + + + + + +
   
   

    +     
   + +

   
   + + + + + +
  
   

3

0
3 2 2 1

2 2

vog

g g
g bs s s

τ
γ

τ
τ τ



 
 
 
 +

 
 + + +
 
 

 {43} 

 
 
 
 
 

Test 1 (defaults to Euler Bernoulli when n = 0) - pass 
If n = 0 and b = 0, the Euler Bernoulli model is, 

 

23 31 2
2

0 0
2 2 22 1 2 1 2 1

2 2 2

2 3

0
2 22 1 2 1

2 2

g gg g
s ss s

y y z zL Lg g g g g g
s s s s s s

v vo og g

L
g g g g

s s s s

τ τττ

τ τ ττ τ τ

τ τ
γ γ

τ ττ τ

    
    − + +
    
     = + +

     
     + + + + + +
     
     

   
   
   
   + +

   
   + + + +
   
   

 {44} 

This matches equation 11 for the Bernoulli beam model described in the Pagilla 
Seshradi paper [6] and the values of g1, g2, and g3 also match the corresponding constants 
f1, f2 and f3 when a =1.  

Test 2 (displacement guide with z input has no dynamics) - pass 
When γL = γ0 = zL/L . 



 
 

 
 

14 
 
 
 

1 1 3 23 2 32 22 2 3 22 2 2

3 2 3 22 1 2 1
2 22 2

gg gg v vo o g bs s sg bs s s g g
L L

y z zL L Lg g g gg bs s s g bs s s

ττ
ττ τ τ τ τ

τ τ
τ ττ τ

  
   + + + ++ + + +
  

   = =
   
   + + + + + +
   
   

 {45} 

 
It can be shown that g2 + g3 = g1. So, yL = zL. 

Test 3 (curvature factor = static gain) – fail 
When γL in equation {43} is equal to zL/(KcL), and all other inputs are zero, the static 

gain for the transfer function should be unity and Kc will be, 

 2

1

g
Kc g

=  {46} 

Substituting values from {27}, 

 ( )
( )

cosh( ) sinh( )
cosh( ) 1

KLa KL KL
Kc KLa KL

−
=

−
  {47} 

This disagrees with two other sources. 
1. The static gain calculated for the modified Sievers Timoshenko beam [4], 

(equation 59). It is repeated below in {48}. 
2. The value calculated for a static Timoshenko beam by Shelton {64}. 

It is interesting to note that {47}reduces to the correct value for the Euler Bernoulli beam, 
when a = 1. 

The difference appears slight. The constant, a, has only to be moved inside the 
parenthesis to get the correct value. This immediately raises the suspicion that it is an 
algebraic error. If that is the case, the author couldn’t find it. In any event, the correct 
value for Kc is, 

 ( ) ( )
( )( )

cosh sinh
cosh 1

KLa KL KL
Kc KL a KL

−
=

−
 {48} 

For a beam with shear, if KL is less than 1, there is a big difference between K͊c and 
Kc . Curvature factors for the following parameters are Kc = 0.89 and K͊c = 2.8. 

 
L = 22 inches T = 44.5 lbf 
h = 0.0034 inches E = 550,000 psi 
W = 44.5 inches  

 
It is significant that Kc, as derived from the modified Sievers Timoshenko model is 

correct, yet that model is based on the same governing equations as this one. The main 
difference is that the cross section rotations are not expressed in terms of the spatial 
derivatives of y. 
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Shelton’s dynamic Timoshenko model 
There is one last point on this topic that deserves mention. In his dissertation, 

Shelton develops a dynamic single span model that includes shear. As part of that model 
he develops a relationship for the curvature factor. It is based on the assumption that the 
acceleration equation (serving the same purpose as the acceleration equation in{36}) has 
an extra term due to shear. The equation is, 

 
2 222

2 22
d y dd zy LsL v vo o dtdt dtx x L

θ
 

∂ = + −  ∂ = 

 {49} 

Where θLs is the angle of shear (a possible reason for including the shear term is discussed 
in another paper [1]). This leads to a value for the curvature factor that is worse than{47}. 
It is, 

 2̂ˆ
1̂

f
Kc f

=  {50} 

where, 

 ( ) ( )

( ) ( )( ) ( )

sinh2ˆ
1 1cosh 1 cosh 1 2sinh

K Lef K Le nTK L K L K L K Le e e ea AG

=
 + + + − 
 

 {51} 

 
( ) ( ) ( ) ( )( )

( ) ( )( ) ( ) ( )( )
cosh sinh / 2 sinhˆ

2 sinh 2 cosh 1 / cosh 1
K L K L K L nT AG K L K Le e e e ef K Le K L K L K L nT AG K Le e e e

− + −
=

− − + −
 {52} 

Using the same data that produced K͊c = 2.8, produces a value for K̂c of 5.2. 
Shelton used this dynamic shear model to derive transfer functions for response at a 

fixed idler and for a steering guide, but he must have had concerns about their validity 
because he didn’t produce plots of their frequency response as he did for everything else. 

Until the curvature factor issue is resolved, I would not advise using the model 
described in this section. 

HOW MUCH DIFFERENCE DOES SHEAR MAKE? 

Which Timoshenko model ? 
The only dynamic lateral model with shear that I trust is a modification of one based 

on Sievers’ work [1]. It passed all three of the tests described above. Sievers’ original 
model and the modified model are described in the companion to this paper [4]. The 
original model won’t do because it can’t handle misaligned rollers. 

The O. D. E. for the modified Sievers model is, 

 

( )
2 2 222 1

0 12 2 2 2

2 2
0 2 33 22

gd y g h dz dyv v voL o oL Ly y gL Lh L dt dt Ldt L h

v d zg ho Lg
L h dt

γ

φ

    
    = − − + − +    

     

 
 + − +
 
 

 {53} 

where, 
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( ) ( )
( )

( ) ( )
( )

( ) ( )
( )

2 2 cosh( ) 12 ( )1 4 sinh( ) 2 cosh( ) 1

cosh( ) sinh( )
( )2 5 sinh( ) 2 cosh( ) 1

sinh( )
( )3 6 sinh( ) 2 cosh( ) 1

K L a KL
g L g L

a KLa KL KL

KL KLa KL KL
g L g L

a KLa KL KL

KL KL KLa
g L g L

a KLa KL KL

−
= =

− −  

−
= =

− −  

−
= =

− −  

′′

′′

′′

 {54} 

and, 

 

( ) ( )
( )

( )( )
( )

( )( )
( )

sinh( ) 1
( )41 sinh( ) 2 cosh( ) 1

1 1 cosh( ) sinh( )
( )52 sinh( ) 2 cosh( ) 1

1 1 cosh( )
( )3 6 sinh( ) 2 cosh( ) 1

KLa KL a
h L g L

a KLa KL KL

a KL KLa KL
h g L

a KLA KL KL

a KL
h g L

a KLA KL KL

−
′= =

− −  

+ − +′= =
− −  

− −′= =
− −  

 {55} 

Equation {53}can only be solved as part of a set of simultaneous equations that 
include the starting point where both yL and ϕL are known. 

 
 
 
 
 
 
 
 
 

Typical data 
An example of the difference between the Timoshenko and Euler Bernoulli models 

is shown in Figure 6. 
 

 

 

 

 

 

 

 

 

Figure 6 
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Comparison of Timoshenko and Euler Bernoulli models for step input 
 

The model parameters are,  
 

vo = 200 fpm T = 44.5 lbf 
h = 0.0034 inches E = 550,000 psi 
W = 44.5 inches         μ = 0.3 

 
The four spans have lengths of 10, 22, 40 and 120 inches. The right hand graph in 

Figure 6 is a plot of the lateral displacements at the downstream ends of each one. The 
dark lines are for the Timoshenko model and the gray lines are for the Euler Bernoulli 
model. The leftmost curve is the input displacement at the upstream roller of the first 
span.  

The left hand graph in Figure 6 shows ϕ, ψ and dyL/dx for the downstream end of the 
second span. The sum of ϕ and ψ is also plotted, but isn’t visible because it is identical to 
the curve for dyL/dx (as it should be). It is clear from Figure 6 that for this span,  ϕ, ψ and 
dyL/dx are comparable to one another in magnitude. 

It’s interesting that the Euler Bernoulli model exhibits nonminumum phase behavior 
(initially going in the wrong direction), but the Timoshenko model doesn’t. I have 
received several anecdotal accounts of incidental observations of nonminimum phase 
behavior during lab experiments. 

 
 
 

TRACTION 

All of the simulations and analysis described here assume that the web becomes 
locked to a roller surface at the line of entry and stays locked until it reaches the exit, but 
we all know that this isn’t true – especially during transient conditions. It was for this 
reason that I was frankly surprised that Sievers model worked as well as it did. This is an 
area of web handling that needs more attention. 

 

CONCLUSIONS 

• A YSK-type Timoshenko model has been developed, and it looks quite plausible. 
However, it produces a value for the curvature factor that doesn’t make sense. After 
exhaustive troubleshooting, I’ve concluded that the problem is most likely something 
of a conceptual nature. 

• The modified Sievers’ model was used to compare multi-span models with and 
without shear. The simulations indicate that there are nontrivial differences.  

o In short spans ϕ, ψ and dyL/dx can be comparable to one another in 
magnitude. 

o For short spans there are significant qualitative differences in response to a 
step input. 

o The optimum time response for a remote pivot steering guide occurs when 
the radius of rotation of the guide mechanism equals KcL. In short spans 
shear significantly affects Kc. 
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• Figure 6 is suggestive of a straightforward experiment which could shed 
considerable light on lateral dynamics models. It would be a simple matter to arrange 
a displacement guide to produce a step input into a series of spans instrumented to 
monitor their displacements. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

APPENDIX A 

The following equations are corrections to his dissertation [5] communicated to me 
over ten years ago by John Shelton. 

Page 59 

 1N T TK CL L eθ+ =−  {56} 

Page 60 

                                where 13 1
nT

C C K a ae AG
= − = +  {57} 

                                
( )

( )
cosh1

2 sinh
C K K L aL e eC

K K Le e

θ − −  =      {58} 

  ( )
( )

cosh
(2.4.12)1 cosh 1

K LeLC
K a K Le e

θ  
= −  

−  
 {59} 

 ( )
( )

sinh
(2.4.13)2 cosh 1

K LeLC
K a K Le e
θ  

=  − 
 {60} 
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Page 61 

 ( )
( )

cosh
(2.4.14)3 cosh 1

a K LeC L a K Le
θ

 
=  

−  
 {61} 

 ( )
( )

sinh
(2.4.15)4 cosh 1

K LeLC
K a K Le e
θ  −

=  − 
 {62} 

 

( )
( )

( )
( ) ( )

( )
( ) ( )( )

cosh cosh1 sinh
cosh 1 cosh 1

(2.4.16)
sinh1 cosh 1
cosh 1

a K L K Lxe e K xea K L K L K L a K Ly e e e e
LL K Le K xeK L a K Le e

θ

    
−    − −    =    + −  −  

 {63} 

Page 64 

 ( ) ( )
( )

sinh cosh1
(2.4.17)

1 cosh
K L aK L K Ly e e eL KcL K L a K LL e eθ

−
= =

−
 {64} 

 ( )
( )

sinh
cosh 1

K LeM EI Ko L e a K Le
θ

 
=−  − 

 {65} 

 ( )
( )

sinh1 (2.4.18)2 cosh

K LM eo
Ty K LKL e c a K L ae

 
 =−
 − 

 {66} 

 
 

CORRECTIONS 

1. Removed superfluous n/AG term in equations (19) 
2. Replaced partial with total derivatives in equations (39) and (41). 
3. Denominators in 39 ii and 40 changed from 2dt to 3dt . 
4. Corrected 02γ  Figure 5 
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